

Flight Test Performance Calculation Package - Piper PA44 Seminole

You must prepare a full set of planning documents for your flight test and can use this package for that purpose.

These flight planning documents must include:

- weight and balance
- o flight plan
- o performance predictions
 - Accelerate-Stop Distance Required
 - Take-Off Distance Required
 - Single Engine Service Ceiling
 - Ftc.

Performance predictions should cover all phases of flight for which charts are available in the POH. We suggest that you prepare these in a package in advance of your flight test using an estimate of the examiner's weight, the forecast weather conditions applicable to the time of your flight test and of course the actual aerodrome data.

The charts and performance information provided in this package are based on a 1978 model Piper PA-44-180 Seminole. You should check to confirm that the information given in this package is applicable for the year or model aircraft that you will use on your flight test. If the information differs then you should use the charts provided by your flight school or the actual POH information when preparing for your flight test, or any other flight.

Often the examiner will give you a questionnaire ahead of time so that you can have this information determined before the examiner arrives. You should of course be capable of explaining how you determined it during the pre-flight oral briefing.

Your documentation should be put together in a package or binder so that it is neat, clear and professional. This will make a good impression with the examiner and will set you up for success.

Using information for your specific aircraft, airfield and the latest weather information, fill in the information below for use in the weight & balance and performance calculations:

Aeroplane and loading information:
Aeroplane empty weight: lbs
Aeroplane empty moment: in-lbs
Pilot weight: lbs
Examiner weight: lbs
 Baggage weight: lbs (Mostly flight bags, jackets and documentation, normally located in the aft baggage area)
Fuel quantity: USG, and Fuel weight: lbs (Sufficient fuel for at least a two hour flight test plus day VFR reserves)
Aerodrome and Weather information:
Aerodrome elevation: feet
Altimeter setting:" Hg
Runway in use:, length of runway: feet
• OAT :°C
• Wind :/ by ATIS
Flight test altitude:' (sufficient to allow recovery at least 2,000' AGL)
Temperature at flight-test altitude:°C from FD

Most aeroplane charts require one to input the pressure altitude and the aeroplane weight so the first steps are to calculate these.

Use the information for the airfield where you will be conducting your flight test and the latest weather information information

Pressure Altitude at take-off = (airfield elevation) + ((altimeter setting) - 29.92) x 1,000' = ft
Select an altitude for the flight test that will allow at recovery at least 2,000' AGL.
Pressure Altitude at test altitude = (test altitude) + ((altimeter setting) - 29.92) x 1,000' = ft
The second step in pre-flight planning is to estimate the aeroplane weight at take-off. To do this we must estimate the weight of fuel that will be carried.
For a typical flight test, sufficient fuel must be carried for about 2 hours of flying plus VFR reserves which correspond to 30 minutes of fuel at normal cruise power. Of course there will have to be fuel for taxi, take-off, climb, descent and landing so we can estimate the fuel using a total flight time of 3 hours at normal cruise power. We can verify that this will be sufficient and then make any adjustments necessary at the end.
Refer to the "Fuel and Power Chart". By interpolation at flight test altitude, the fuel flow is GPH per engine or GPH total
Estimated fuel required is 3 hours x GPH = USG = lbs
Actual fuel on board = USG = lbs
Using this information, we can now calculate the weight and balance for the flight test
Use the weight and balance chart to determine your take-off and landing weights and center of gravity positions
Take-off weight: lbs,

Landing weight: _____ lbs, Center of Gravity: Within Limits / Outside Limits

Accelerate-Stop Distance Required (ASDR)

The total distance needed to accelerate to the maximum abort speed (sometimes called the decision speed) and then stop on the remaining runway. This is the distance that will be required if you had an engine failure at the abort speed and decided to abort the take-off.

It is not a legal requirement that the accelerate-stop distance available exceed the accelerate-stop distance required by the aeroplane. However you should calculate the distance required, compare it to the distance available and be aware of the implications of the result should an engine fail just prior to lift off.

Knowing that you do or don't have enough distance available to stop on the runway following an engine failure just before lift off can be used to help in your decision making. Be sure to include this as part of your pre-takeoff briefing; for example, if you brief that there is not distance available to stop on the runway then you can mentally prepare for running off the end of the runway (and for performing the critical action items to secure the aircraft) if you have an engine failure just before lift off.

Refer to the "Normal Procedure Accelerate-Stop Distance" graph and the local aerodrome information
Accelerate-Stop Distance Required: ft
Accelerate-Stop Distance Available: ft
Take-off Distance Required (TODR)
The total take-off distance needed to clear a 50 ft tall obstacle. Where there are existing obstacles at your departure airport you should determine the distance required to clear these obstacles.
Refer to the "Normal Procedure Take-off Distance Over 50 ft Barrier" chart and the local aerodrome data
Take-off Distance Required: ft
Take-off Distance Available: ft

Time, Fuel and Distance to Climb

This is the time, fuel and distance needed to climb from an initial altitude up to a specified altitude, usually the cruising altitude. For the flight test the initial altitude is usually the elevation of the departure airport and the final altitude is the altitude that you will use when manoeuvring or demonstrating your engine failure procedures.

The chart is read by finding the time, fuel and distance to climb from sea level to the departure aerodrome altitude and then subtracting these from the time, fuel and distance to climb from sea level to the flight test altitude.

Refer to the "Time, Fuel and Distance to Climb" chart

Climb from sea level to flight test altitude		
Time	minutes	
Fuel	USG	
Distance	nm	

Climb from sea level to	
aerodrome elevation	
Time	minutes
Fuel	USG
Distance	nm
	aerodrome Time Fuel

Climb from aerodrome to flight test altitude	
Time	minutes
Fuel	USG
Distance	nm

Single Engine Climb Rate

The single engine rate of climb is usually determined for two situations – firstly following an engine failure after take-off and secondly at your cruising altitude.

Refer to the "Climb Performance – One Engine Operating" chart

After liftoff		
Single engine rate of climb:	fpm (% gradient)
At flight test altitude		
Single engine rate of climb	fpm (% gradient)

Single Engine Cruise Performance

If you are above your single engine absolute ceiling when an engine fails then you will be unable to maintain altitude. You will gradually descend down to the single engine absolute ceiling even if you are at full power on the operating engine and are maintaining the best single engine rate of climb speed (blue line, V_{YSE}). You need to check that you still will be able to maintain an altitude above terrain. This is particularly important during instrument conditions when you can't see the terrain, so you should always check that your single engine absolute ceiling is above the Minimum Obstacle Clearance Altitude (MOCA) if you are flying IFR.

Refer to the "Climb Performance – One Engine Operating" chart to determine the single engine service ceiling, where climb rate is only 50 fpm

Single Engine Service Ceiling: _____ ft

Time, Fuel and Distance to Descend

This chart enables you to determine the time, fuel and distance needed to descend from an initial altitude to some final altitude. The chart is similar in its form and usage to the one used to determine fuel, time and distance to climb. For the flight test the initial altitude is usually the altitude that you will use when manoeuvring or demonstrating your engine failure procedures and the final altitude is the altitude of the aerodrome that you will be landing at.

The chart is used by finding the time, fuel and distance to descend from aerodrome elevation to sea level and then subtracting these from the time, fuel and distance to descend from flight test maneuvering altitude to sea level.

Refer to the "Time. Fuel and Distance to Descend" chart

Descend from flight test altitude to sea level	
Time	minutes
Fuel	USG
Distance	nm

	Descend from aerodrome elevation to sea level Time minutes	
-	Fuel	USG
	Distance	nm

Descend from flight test altitude to aerodrome elevation	
Time	minutes
Fuel	USG
Distance	nm

Landing Distance Required

The total landing distance needed to clear a 50 ft tall obstacle situated at the threshold. Where there are existing obstacles at your arrival airport you should determine the distance required to clear these obstacles and land.

The landing distance chart requires the pressure altitude and temperature (to take into account the effects of density altitude) and the wind component to calculate landing distance but do not usually take into account the effect of weight on landing distance.

Refer to the "Landing Distance Over 50 ft Barrier, Saerodrome information	Short Field Effort" chart and the local
Landing Distance Required:	ft
Landing Distance Available:	ft

PERFORMANCE CALCULATIONS SUMMARY

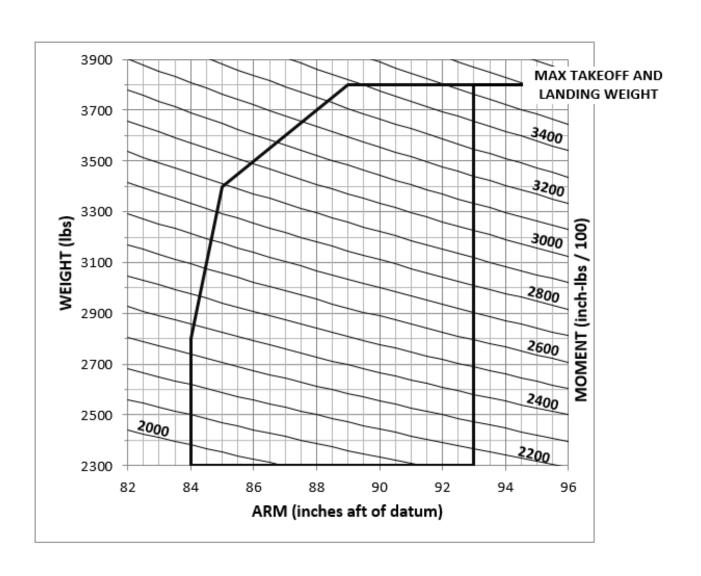
WEIGHT AND BALANCE		
Estimated fuel required: USG =	lbs	
Actual fuel on board: USG = I	bs	
Take-off weight: lbs, Cente	r of Gravity: Within Limits / Outside Limits	
Landing weight: lbs, Cente	r of Gravity: Within Limits / Outside Limits	
TA	KE OFF	
Pressure Altitude: ft	Take-off Decision Speed: KIAS	
Accelerate-Stop Distance Required:	ft,	
Take-off Distance Required: ft,	Distance Available: ft	
	CLIMB	
NORMAL Airspeed: KIAS	ONE ENGINE INOPERATIVE Airspeed: KIAS	
Time: minutes	After Liftoff:	
Fuel: USG	Single Engine Rate of Climb: fpm (% gradient)	
Distance: nm	At Flight Test Altitude: Single Engine Rate of Climb: fpm (% gradient)	
CRUISE		
Pressure Altitude: ft	Single Engine Service Ceiling: ft	
Power Setting: in. Hg, RPM		
Performance: KIAS, KTAS,	GPH per Engine	
DESCENT		
Airspeed: KIAS	Time: minutes	
Fuel: USG	Distance: nm	
LA	NDING	
Approach Airspeed: KIAS		
Landing Distance Required: ft,	Distance Available: ft	

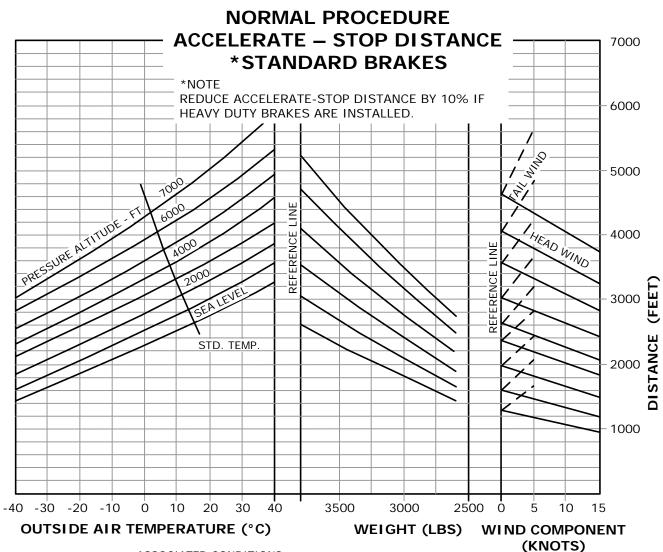
FUEL AND POWER CHART - LYCOMING (L) O-360-E SEROES (PER ENGINE)

Press. Alt.	Std. Alt. Temp.	99 BHP – 55% Rated Power Approx Fuel Flow 9.3 Gal/hr RPM AND MAN. PRESS.			117 BHP - 65% Rated Power Approx Fuel Flow 10.3 Gal/hr RPM AND MAN. PRESS.			135 BHP - 75% Rated Power Approx Fuel Flow 11.2 Gal/hr RPM AND MAN. PRESS.				
Feet	°C	2100	2200	2300	2400	2100	2200	2300	2400	2200	2300	2400
SL	15	22.2	21.7	21.2	20.7	24.5	24.0	23.4	22.9	26.4	25.8	25.2
1000	13	21.9	21.4	21.0	20.4	24.2	23.7	23.1	22.6	26.1	25.5	24.9
2000	11	21.6	21.1	20.7	20.2	23.9	23.4	22.9	22.3	25.8	25.2	24.6
3000	9	21.3	20.8	20.4	19.9	23.6	23.1	22.6	22.1	25.4	24.9	24.4
4000	-	04.0	00 (00.4	40.7	00.0	00.7	00.0	04.0		04.7	04.4
4000	7	21.0	20.6	20.1	19.7	23.2	22.7	22.3	21.8	FT	24.7	24.1
5000	5	20.8	20.3	19.9	19.4	22.9	22.4	22.0	21.5	-	FT	23.8
6000	3	20.5	20.2	19.6	19.2	22.6	22.1	21.7	21.3	-	-	FT
7000	1	20.2	19.7	19.3	18.9	FT	21.8	21.5	21.0			
8000	-1	19.9	19.5	19.1	18.6	_	FT	21.2	20.7			
9000	-3	19.6	19.2	18.8	18.4	_	_	FT	20.5			
10000	-5	19.3	18.9	18.5	18.1	_	_	_	FT			
11000	-7	FT	18.6	18.3	17.9							
12000	-9	-	FT	18.0	17.6							
13000	-11	-	-	FT	17.4							
14000	-13	-	-	-	FT							

2. Fuel flow provided for Best Power mixture

Mark up these charts in red so that it is easy for the examiner to see how you easy for the examiner performance figures came up with your performance.


^{1.} To maintain constant power, add approximately 1% manifold pressure for each 6°C above standard, subtract approximately 1% for each 6°C below


	Weight	Arm	Moment
	(lbs)	(inches)	(inch-lbs)
Basic Empty Weight			
Pilot & Co-Pilot		80.5	
Rear Passengers		118.1	
Baggage (Max 200lb)		142.8	
Zero Fuel Total			
Fuel (6lb / USG)		95.0	
Ramp Weight (Max 3816lb)			
Start & Taxi Fuel	16	95.0	1520
Take-Off Weight (Max 3800lb)			
Trip Fuel (6lb / USG)		95.0	
Landing Weight (Max 3800lb)			

NOTE:

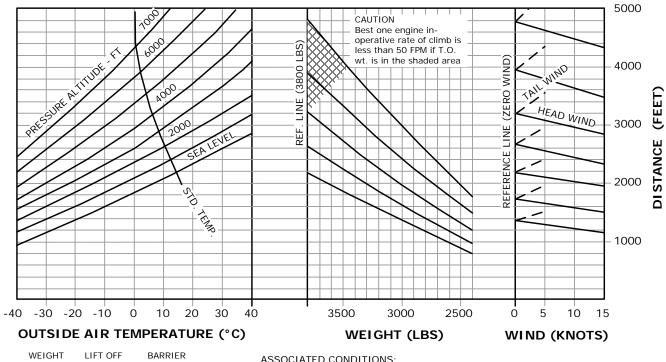
Weight and CG location must be within limitations at all times during the flight. It is not sufficient to simply calculate the weight and balance at take-off

ASSOCIATED CONDITIONS:

POWER - BOTH ENGINES AT 2700 RPM AND

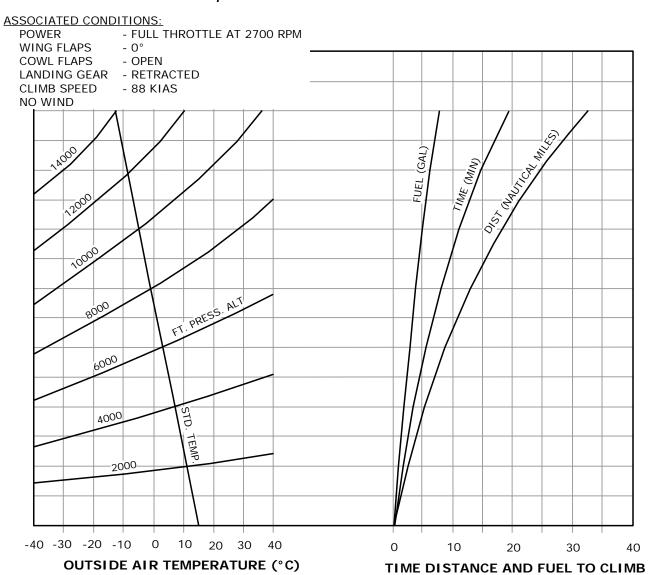
FULL THROTTLE

MIXTURE - FULL RICH

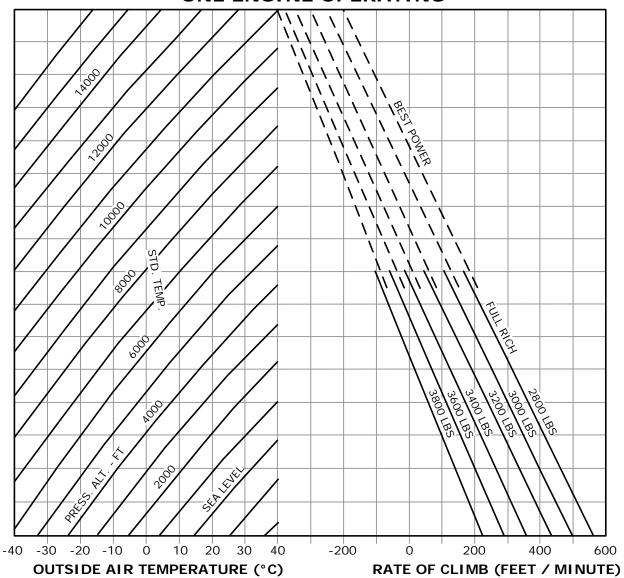

FLAPS - 0° BRAKING - MAX COWL FLAPS - OPEN

RUNWAY - PAVED, LEVEL, DRY SURFACE

ABORT SPEED - 75 KIAS


NORMAL PROCEDURE TAKEOFF DISTANCE OVER 50 FT. BARRIER

WEIGHT	LIFT OFF	BARRIER	ASSOCIATED COND	ITIONS:
POUNDS	SPEED KIAS	SPEED KIAS		
3800	75	88	POWER	- BOTH ENGINES AT 2700 RPM AND
3400	71	83		FULL THROTTLE BEFORE BRAKE RELEASE
3000	66	78	FLAPS	- 0°
2600	62	73	RUNWAY	- PAVED, LEVEL, DRY SURFACE



TIME, FUEL AND DISTANCE TO CLIMB

CLIMB PERFORMANCE – ONE ENGINE OPERATING

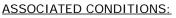
ASSOCIATED CONDITIONS:

POWER - FULL THROTTLE AND 2700 RPM
MIXTURE - FULL RICH (ABOVE 75% POWER)
- BEST POWER (BELOW 75% POWER)

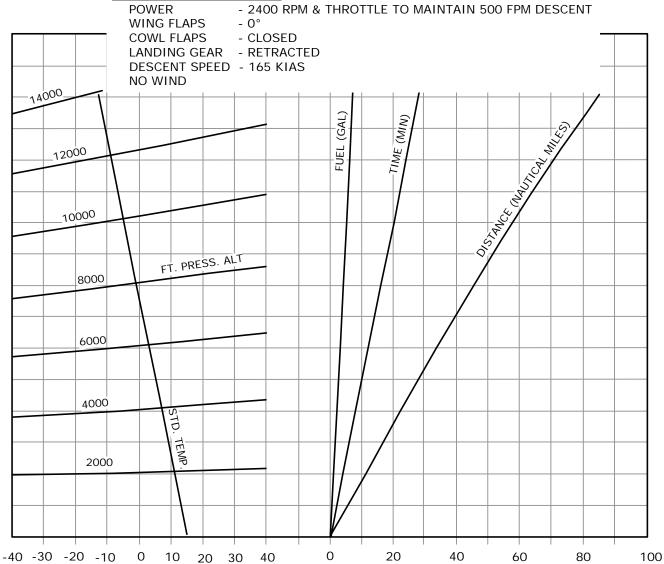
INOPERATIVE PROPELLER - FEATHERED

FLAPS - 0° LANDING GEAR - UP

COWL FLAPS - OPEN (OPERATING ENGINE)
- CLOSED (INOPERATIVE ENGINE)

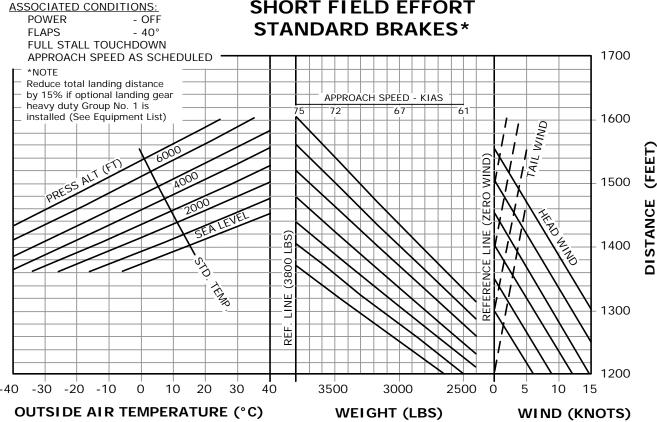

AIRSPEED - 88 KIAS

BANK ANGLE - 3° - 5° BANK TOWARD OPERATIVE ENGINE



TIME DISTANCE AND FUEL TO CLIMB

TIME, FUEL AND DISTANCE TO DESCEND



OUTSIDE AIR TEMPERATURE (°C)

LANDING DISTANCE OVER 50 FT. BARRIER SHORT FIELD EFFORT

PRIORITY / PRIORITÉ ADDRESSEE(S) / DESTI	NATAIRE(S)	
<< ≡ FF →		
		<<≡
FILING TIME / HEURE DE DÉPÔT ORIGI	NATOR / EXPÉDITEUR	•
\rightarrow	<<≡	
SPECIFIC IDENTIFICATION OF ADDRESSEE(S) AND/OR ORIGINATOR / IDENTIFICATION PRÉCISE DU(DES) DESTINATAIRE(S) ET/OU DE L'EXPÉDIT	EUR
	IDENTIFICATION / 8 FLIGHT RULES / TYPE OF FLIGHT	/
	ATION DE L'AÉRONEF RÈGLES DE VOL TYPE DE VOL	
<< ≡ (FPL	WAKE TURBULENCE CAT./	<<
9 NUMBER / NOMBRE TYPE OF AIRCRAFT /		İ
-		<<≡
13 DEPARTURE AERODROME / AÉRODROME	DE DÉPART TIME / HEURE	
	<< ≡	
15 CRUISING SPEED /	NEL ANNEAU POUTE (POUTE	
VITESSE DE CROISIÈRE ALTITUDE / LE		1
<u>- 0, 0, 0, 0, 0 0, 0, 0, 0</u>	0 ,0]→	
		<<≡
16 DESTINATION AEDODDOME TOTAL EET/DUDÉ	E TOTALE ESTIMÉE SAR ALTN AERODROME / 2ND ALTN AERODR	OME /
	E TOTALE ESTIMEE SAR ALTN AERODROME / 2ND ALTN AERODF HRS MINS HRS MINS AÉRODROME DE DÉGAGEMENT 2e AÉRODROME DE DÉC	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<<≡
18 OTHER INFORMATION / RENSEIGNEMENT	S DIVERS	Ì
_		
)<< ≡
19 ENDURANCE / AUTONOMIE	EMERGENCY RADIO / RADIO DE SECOURS	
	SONS ON BOARD / PERSONNES À BORD UHF VHF ELT ELT TYPE / TY	PE D'ELT
- E/ →	$P / $ $\longrightarrow R / U $ $V $ $E $	
SURVIVAL EQUIPMENT / ÉQUIPE POLAR DESE		
POLAIRE DÉSE	RT MARITIME JUNGLE LAMPES FLUORES UHF VHF	
\rightarrow S / P D		
DINGHIES / CANOTS NUMBER CAPAC	CITY COVER COLOUR	
NOMBRE CAPAC		
\rightarrow \square / \square \rightarrow \square	→ C → << =	AMPLUDIAN
AIRCRAFT COLOUR AND MARKIN	IGS / COULEUR ET MARQUES DE L'AÉRONEF WHEELS SEAPLANE ROUES HYDRAVION SKIS	AMPHIBIAN AMPHIBIE
A /		
REMARKS / REMARQUES		
→ N /	<<≡	
AN ARRIVAL REPORT WILL BE FI	LED WITH / UN COMPTE RENDU D'ARRIVÉE SERA NOTIFIÉ À :	
NAME AND PHÔNE NUMBER OR AD NOM ET NUMÉRO DE TÉLÉPHONE (DRESS OF PERSONS(S) OR COMPANY TO BE NOTIFIED IF SEARCH AND RESCUE ACTION INITIATED / DU ADRESSE DE LA (DES) PERSONNE(S) OU COMPAGNIE À AVISER SI DES RECHERCHES SONT ENTREPRI:	SES_
PILOT-IN-COMMAND / PILOTE COM	MANDANT DE BORD PILOT'S LICENCE NO. / N° DE LICENCE DU PILOTE	
C /)<< ≡	
FILED BY / DÉPOSÉ PAR	SPACE RESERVED FOR ADDITIONAL REQUIREMENTS / ESPACE RÉSERVÉ À DES FINS SUPPLÉMENTAIRE	S